Intrinsic Sensitivity Limits for Multiparameter Quantum Metrology

نویسندگان

چکیده

The quantum Cram\'er-Rao bound is a cornerstone of modern metrology, as it provides the ultimate precision in parameter estimation. In multiparameter scenario, this becomes matrix inequality, which can be cast to scalar form with properly chosen weight matrix. Multiparameter estimation thus elicits tradeoffs each estimated. We show that, if information encoded unitary transformation, we naturally choose metric tensor linked geometry underlying algebra $\mathfrak{su}(n)$, applications numerous fields. This ensures an intrinsic that independent choice parametrization.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

True precision limits in quantum metrology

Quantum mechanics provides insight into fundamental limits on the achievable measurement precision that cannot be beaten irrespectively of the extent of any improvements in measurement technology. The best known example is that of the optical phase measurement where difference of phase delays φ in the arms of interferometer in the absence of decoherence can only be measured up to a precision kn...

متن کامل

Alternative measures of uncertainty in quantum metrology: Contradictions and limits

We examine a family of intrinsic performance measures in terms of probability distributions that generalize Hellinger distance and Fisher information. They are applied to quantum metrology to assess the uncertainty in the detection of minute changes of physical quantities. We show that different measures lead to contradictory conclusions, including the possibility of arbitrarily small uncertain...

متن کامل

Enhancing sensitivity in quantum metrology by Hamiltonian extensions

A well-studied scenario in quantum parameter estimation theory arises when the parameter to be estimated is imprinted on the initial state by a Hamiltonian of the form θG. For such “phase shift Hamiltonians” it has been shown that one cannot improve the channel quantum Fisher information by adding ancillas and letting the system interact with them. Here we investigate the general case, where th...

متن کامل

Quantum error correction for metrology.

We propose and analyze a new approach based on quantum error correction (QEC) to improve quantum metrology in the presence of noise. We identify the conditions under which QEC allows one to improve the signal-to-noise ratio in quantum-limited measurements, and we demonstrate that it enables, in certain situations, Heisenberg-limited sensitivity. We discuss specific applications to nanoscale sen...

متن کامل

Multiparameter entanglement in quantum interferometry

Mete Atatüre, Giovanni Di Giuseppe, Matthew D. Shaw, Alexander V. Sergienko, Bahaa E. A. Saleh, and Malvin C. Teich Quantum Imaging Laboratory, Department of Physics, Boston University, 8 Saint Mary’s Street, Boston, Massachusetts 02215 Quantum Imaging Laboratory, Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary’s Street, Boston, Massachusetts 02215 ~Received 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review Letters

سال: 2021

ISSN: ['1079-7114', '0031-9007', '1092-0145']

DOI: https://doi.org/10.1103/physrevlett.127.110501